


# **Liquid Scintillation LS** - Key Technique in Joint Research and **Training** -

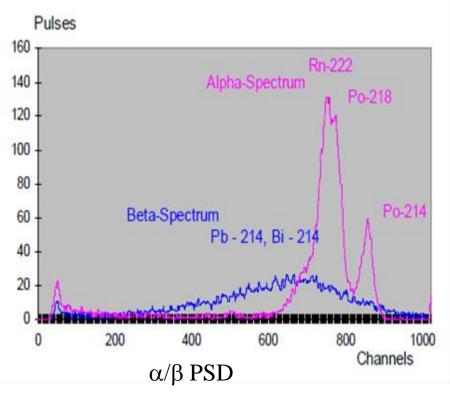
#### **Siegurd Moebius**

German Society for Liquid Scintillation DGFS e.V.



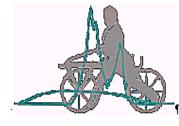



# **Summary LS**


- Liquid Scintillation is a Measuring Technique that converts transition energy into light photons.
- The method is universal  $(\alpha, \beta, \gamma, \text{Cerenkov}, \text{luminescence})$ , efficient (upto 100%) and easy to handle.
- Modern LS methods include as key techniques electronical α/β PSD, extractive methods for sample preparation and TDCR for quantitative detection.








Discrimination between  $\alpha$ - and  $\beta/\gamma$  radiation applies the pulse shape discrimination. PSD makes use of the longer life time  $\alpha$ -pulses for their electronical separation.

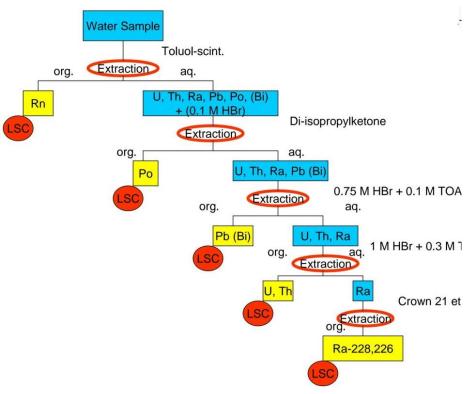




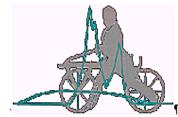




#### **Extractive Scintillators**


## Combination of Extractive Scintillators

= Homogeneous Solution of Scintillators + Organic Solution + Extractive Agent


Sequence for Natural Radionuclides

Rn, Ra, Po, Pb, U, Th

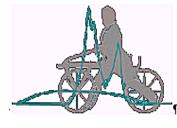










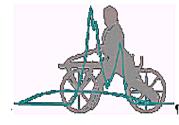

#### **LSC 2001**

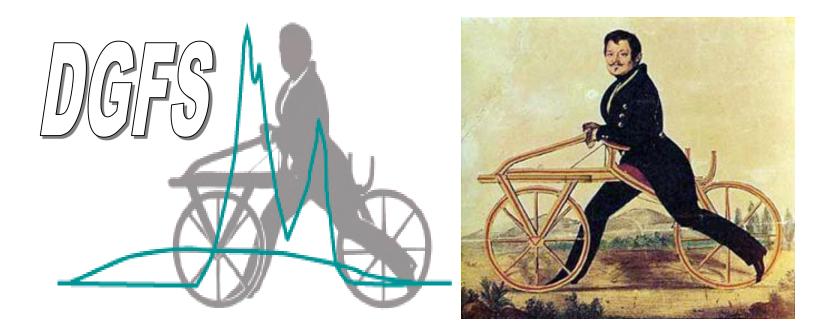
#### **International Conference on Advances in Liquid Scintillation Spectrometry**

Karlsruhe, Germany May 7 – 11, 2001



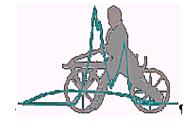





Karlsruhe 2001










Freiherr von Drais 1817

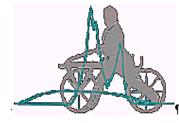




### **Social Events**



LSC2001 Karlsruhe

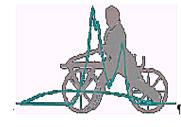


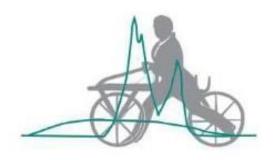



#### **DGFS Aims**

- Development and exchange of experiences in modern Liquid Scintillation (LS) to a broader community
- Development and improvement of analytical procedures for LS with special emphasis on natural radionuclides
- Academical education and training in Liquid Scintillation; **International Training Courses**







#### **DGFS Aims**

- Development and exchange of experiences in modern Liquid Scintillation (LS) to a broader community
- Development and improvement of analytical procedures for LS (LS Handbook) with special emphasis on natural radionuclides
- Academical education and training in Liquid Scintillation; **International Training Courses**

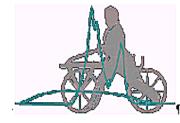


#### **LS Handbook**





#### LIQUID SCINTILLATION

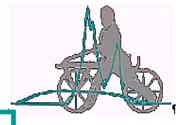

MEASURING PROCEDURES,
NEW DEVELOPMENTS -

3rd completely revised and extended Edition 2024

> MOEBIUS Siegurd MOEBIUS Tiana TARANCON Alex WENDEL Juergen

DGFS e.V. German Society for Liquid Scintillation Spectrometry Karlsruhe Institute of Technology, 2024 Karlsruhe






# **Motivation**

- This Handbook on Liquid Scintillation LS presents a compilation of the contemporary most important radioanalytical procedures applying this measuring technology.
- It serves as a manual for the determination of radionuclides by LS.
- We wish that the fully revised and extended 3rd edition would further spread this modern and future prospective methodology as well beyond Radioanalysis!



#### **Selected Procedures**



Quick Method for Key Nuclides in Drinking Water (Rn-222, Ra-226/8, Pb-210, H-3, gross  $\alpha/\beta$ )

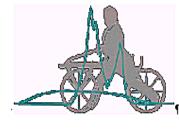
LL Tritium in Sea Water by Electrolytic Enrichment

RAD Disk Based Methods and Plastic Scintillator Microspheres for Ra and Sr-isotopes, Pb-210 and Tc-99<sup>(m)</sup>

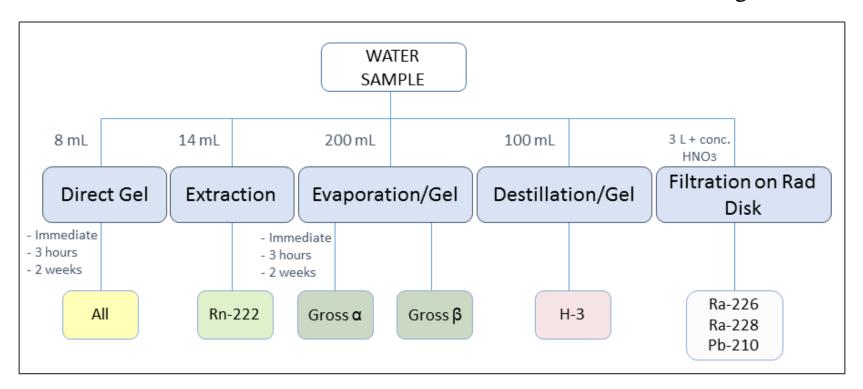
TDCR Cerenkov Counting in Targeted α-Therapy (Ra-224/Pb-212)

Radiocarbon in Biobased Products (Fuel)

Rapid Method for Sr Isotopes by TDCR Cerenkov


Artificial Radionuclides in the Nuclear Fuel Cycle (Fe-55, Ni-63 and Ca-41 in decommissioning activities)

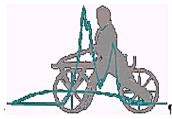
Contamination (e.g. α- and Ni-63 by smear) and Incorporation Control (e.g. P-32 in urine)


and others also related to FIA and Luminescense Counting

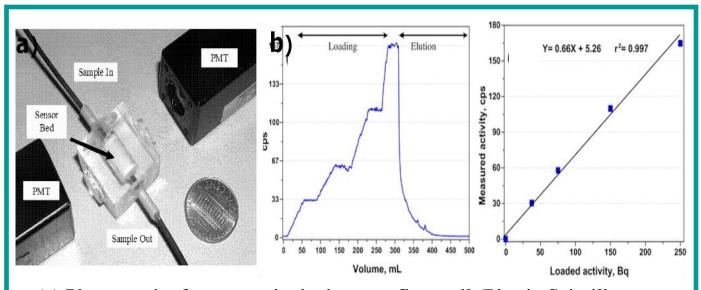


# Radioanalysis of Drinking Water



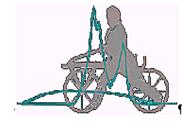

Measuring procedures are dedicated to natural radionuclides as well as radionuclides from nuclear fission activities like decommissioning.




Quick Method for Key Nuclides in Drinking Water



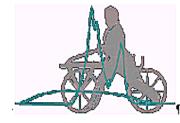
# **Plastic Scintillator Microsphere**




Applications in Radiation Protection and Medicine as well as solid microsphere applications with relevance to FIA round up the spectrum of content.



- (a) Photograph of a composite bed sensor flow cell (Plastic Scintillator Microspheres) and
- (b) The response of the sensor to pertechnetate solutions (Hamel 2021)






#### **DGFS Aims**

- Development and exchange of experiences in modern Liquid Scintillation (LS) to a broader community
- Development and improvement of analytical procedures for LS with special emphasis on natural radionuclides
- **Academical education and training in LS: International Training Activities (Tiana!)**





# **Heading for More**

- Spreading Measuring Handbooks for Academical Education
- **Extending LS for FIA Applications**
- Providing Knowledge on simple, fashion made LS Arrangements



# Thank's to CMU as well for the fruitful cooperation

